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Abstract

This publication presents an architecture for using diagnostic reasoning

techniques in selective monitoring. Given the sensor readings and a model

of the physical system, a number of assertions are generated and expressed

as Boolean equations. The resulting system of Boolean equations is solved

symbolically. Using a priori probabilities of component failure and Bayes'

rule, revised probabilities of failure can be computed. These will indicate

what components have failed or are the most likely to have failed. This

approach is suitable for systems that are well understood and for which

the correctness of the assertions can be guaranteed. Also, the system must

be such that assertions can be made from instantaneous measurements.

And the system must be such that changes are slow enough to allow the

computation.
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1 Introduction

Complex physical systems can be difficult to monitor because the number

of sensor signals may exceed the human operators' ability to handle them.

One solution to managing overwhelming amounts of sensory information

is the use of computer aids that preprocess the incoming data and direct the

operators' attention to the most critical parts of the physical system at any

given time. Causal reasoning [10] and information quantification [11] are

examples of techniques that lead to computer aids to selective monitoring.

Diagnostic reasoning techniques can also be used to preprocess the sen-

sor data and detect which parts of the physical system require more atten-

tion because components have failed or are most likely to have failed.

This publication presents an architecture for using diagnostic reasoning

techniques in selective monitoring. The diagnosis process starts with the

generation of as many assertions as possible, given the sensory informa-

tion. These assertions are expressed as Boolean equations and are com-

bined, symbolically, into a simplified disjoint sum form. Using a priori

probabilities of failure for each component and Bayes' rule, revised proba-

bilities of failure are computed. These are then used to focus the operators'

attention on those components known to have failed or which are most

likely to have failed. This method is robust in the sense that even when

a priori probabilities are not accurate, if there is enough evidence showing

that a component has or has not failed, the value computed for the revised

probability of failure will be 1 or 0, respectively. It has the advantage of

decoupling diagnostic reasoning into the generation of assertions and in-

ference. The latter can be seen as solving a set of Boolean equations for

what the well-developed machinery of Boolean algebra can be used. This

method is suitable for physical systems that are well understood and for

which accurate models exist.

The Boolean representation is only used for the inference. The gener-

ation of assertions still requires more powerful tools which can be either

reason maintenance systems or domain-dependent methods. The latter

seems to be more effective in domains that are well understood and for

which good theories exist.



2 Approach

Consider a physical system 5] made up of C interconnected components,

el, c2, • • • ,Cc.

Figure I shows the diagnosismodulc of the selectivemonitoring system.

The inputs include the sensor readings, a model of r,,and the (a priori)

probabilitiesof component failures.The output isthe set of revised prob-

abilitiesof component failuregiven the evidence that can bc deduced from

the sensor readings.

Let d,be a logicalvariablethat indicatesthe statusof component c_.Itis

true (T) ifciisfaultyand false(F) otherwise. In thisanalysis,a component

isconsidered faultyifand only ifitexhibitsanomalous behavior. Prom the

point ofview ofmonitoring what isimportant iswhether or not the physical

system isworking properly at any given time.

Let N be the number of sensors in E and sl, s2,.-., 8N their values at a

given time.

An analysis of the sensor values, using a model of E, allows I assertions

about the status of the components to be made. The method of analysis

may be different from one domain to another. It is assumed that all asser-

tions are correct. Although it is not necessary that the set of assertions be

complete, that is that all correct assertions be made, the more assertions

the better the conclusions that will be drawn.

Regardless of which method is used for the analysis, each assertion can

be expressed as a Boolean equation f,(dl, d2,..., de) = T. Therefore, the

set of all assertions is a system of Boolean equations. The conjunction of

all equations must also be satisfied, that is

I

IIf*(dl,d2,'",dc) = T (1)
_=1

where the product is the logical operation AND 1. Equation 1 can be rewrit-

ten in disjunctive normal form [12] as

1In this publication, products and sums are used as both arithmetic and logical oper-
ations. It will be clear from context which is which.
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Figure 1: The diagnosis module of the selective monitoring system



where

2°-1 C-1

E H 7jk .ej = W (g)
j=0 k=O

dk+z if bjk = l7j_ = dk+z ifbjk=0

with (bj(c-z)bj(c-2)'"bjo)2 being the binary representation of j. As in

equation 1, a product is the logical operation AND; a sum is the logical

operation OR. The logical variable ej is either T or F depending on whether

C-1

or not the conjunction ]-I 7jk appears in the disjunctive normal form of
k=0

equation 1.

Equation K summarizes what has been asserted about E given the sen-

sor readings and the system model, and using the available analysis tools.

Equation K can be represented by the integer O whose binary representa-

tion is (82c_1 82c-2" "" _0)2, where

{ 0 ifej =F0j 1 if ej = T (2)

Let p(c_) be the (a priori) probability of failure for component c+ It

is assumed that p(cl),p(c2),... ,p(cc) are independent. Let p(ci[K) be the

conditional probability of failure for c_ given that equation K is satisfied.

From Bayes' rule:

p(g[c,) . p(c_) (3)
P(c'IK) = p(g)

where p(Klc, ) is the conditional probability that equation K is satisfied

given the failure of c_, and p(K) is the (a priori) probability that equation

K is satisfied.

Since it was assumed that p(ct),p(c2),...,p(cc) are independent, it is

straightforward to compute the (a priori) probability that equation K is

satisfied:

2c-1 C-1

p(K) : X [(II Pjk)'Oj] (4)
j=o k--O



where

{ p(c_+l) if bj_ = 1

(i.e., if "/¢k = d_+l) (5)
Pjk = 1- p(ck+l) ifbj_=0

(i.e., if 7j_ = dk+l )

with (bj(c-1)bj(c-2)" "bj0)2 being the binary representation of j, and 8j

being as defined in equation 2.

Similarly, it is straightforward to compute the conditional probability

that equation K is satisfied given the failure of component c_:

G-1

p(K[c_) = _[( H p:k).0:] (6)
jeG k=0

where Ci = {j I [bj_ = 1]}, (bj(c-1)bj(¢_2)... b._o)2 is the binary representa-

tion of j, Pjk is defined in equation 5, and 0j is defined in equation 2.

With the probabilities p(c_), p(K), and p(Klq), it is possible to compute

p(c4]K) (the conditional probability of failure for c_ given that equation K

is satisfied) by using equation 3.

3 Implementation issues

The approach outlined in the previous section requires the a priori prob-

abilities of failure for each component. These can be obtained from the

manufacturers or from previous experience [17 I. It should be noted that

the approach is robust in the sense that even when the a priori probabilities

are not accurate, if equation K contains enough evidence to conclude that

component c_ has failed, the value computed for p(c4]K) will be 1.

In practice, the computation of equations 4 and 6 need not be carried

out going over all the 2 v terms for the summation. Only the terms for

which 0j. is 1 will be added. A table computed off-line can store for each

O a list of the terms that should be added. Furthermore, the products in

equations 4 and 6 can be computed in parallel.
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Further gains in computational efficiency are possible if equation 1 is
written in simplified disjoint sum form [2,13], instead of disjunctive normal

form, that is2

D

gj(dl,d2,...,dv) = T (K')
j-o

where gj(dl, d2,..., dc) is a conjunction of (not necessarily all) the logical

variables dl, d2,..., dc, some of which may be negated, and

a 7_ b =_ ga(dl, d2,'", de) • gb(dl, d2,'" ", de) = F.

Equation K' is a disjunction of D+ 1 conjunctions. Equations K and K' are

equivalent, but in most cases the latter includes fewer (i.e., D + 1 < 2c) and

shorter terms. Equation K' can be computed by symbolic manipulation of

equation 1.

As in equation 4, it is straightforward to compute the (a priori) proba-

bility that equation K' is satisfied:

D

p(g') = _ II p}k (7)

j=0 ke_

where ]C_ = {kldk or dk is in g_}, and

, { p(ck+l) if dk+l is in gj (8)P_k = 1--p(c,+l) ifdk+l is ingj

Similarly, as in equation 6, it is straightforward to compute the condi-

tional probability that equation K' is satisfied given the failure of compo-

nent c,:

p(g'lc_) = _ II P_ (9)

je_ ke_:;
k¢i

where ,F_ = {j[[0 _ j _< D] A [_ is not in gj ]}. ]C_ and 4k are the same

defined above.

2Unlike the disjunctive normal form, the disjoint sum forms are not unique. The same

logical function can have more than one disjoint sum form.

6
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Figure 2: A digital circuit example

As before, with the probabilities p(cl), p(K'), and p(K'lc_), it is possible

to compute p(c_lK) (the conditional probability of failure for c_ given that

equation K' is satisfied) by using equation 3. If equation K' contains enough

evidence to conclude that component c_ has failed, the value computed for

p(c_[g) will be 1.

4 Digital circuit example

Figure 2 shows one digital circuit that has been used in previous work on

automatic diagnosis [4,6]. It has five inputs and two outputs. The circuit's

inputs are connected to the inputs of three multipliers. The outputs of the

multipliers are connected to the inputs of two adders. The outputs of the

two adders are the circuit's outputs.

Suppose that the circuit is being monitored and that sensors have been

placed at the five inputs and at the two outputs.

Let ml, m2, m3, al, a2 be the logical variables that indicate the status of

components M1, M2, M3, A1, A2, respectively. For a full correspondence

with the notation used in the previous sections let dl = ml, d2 = m2,

d3 -_ m3_ d4 -- ml, ds = a2.

Upon measuringA = 3, B = 2, C = 2, D-- 3, E = 3, F = 10, and

7



G = 12, the following assertions can be made3:

ml + m2 + al = T (10)

which says that M1 is faulty or 4 M2 is faulty or A1 is faulty,

ml -b m3 + al + a2 = T (11)

which says that M1 is faulty or M3 is faulty or A1 is faulty or A2 is faulty,
and

m2.m3.a2+m2.m3+m2.a2+m3.a2 = T (12)

which says that there cannot be only one of M2, M3, A2 failing; or, equiv-

alently, either M2, M3, and A2 are not faulty, or at least two of them are

faulty. It should be noted that this last assertion was not made in previ-

ous work [8], because it is domain-dependent, and also because in previous

work if a component does not exhibit anomalous behavior nothing can be
asserted s.

The three assertions 10 to 12 can be combined, yielding

(ml + m2 + al)" (ml + m3 + al + a2)

• (m22" _" _ + m2- m3 + m2. a2 + rn3" a2) _- T

whose disjoint sum form is

m2. a2 + ml • _--1. ms • _i" _-5

+ m2. m3 • _ + ml • m2 • rn3 • aT. a2

+ _-5" m3 • al • a2 + m2 • m3 • al • = T (13)

Assuming that the (a priori) probabilities of failure for all components,

p(ml), p(m2), p(m3), p(al), and p(a2) are equal to 0.01, the a priori prob-

ability that equation 13 is satisfied (see equation 7) is:

p(13) = 0.012+0.01.0.994+

0.012 • 0.99 + 0.013. 0.992 +

0.013 • 0.99 + 0.01 • 0.993

SSee appendix A for how these assertions can be generated automatically.
4The or is inclusive.

5As mentioned in section 2, in the approach presented in this publication, if a compo-
nent does not exhibit anomalous behavior, it is assumed to be not faulty.

8



The conditional probability that equation 13 is satisfied given the failure

of M1 (see equation 9) is:

p(131ml ) = 0.012 +0.994+

0.012 • 0.99 + 0.012 • 0.992 +

0.012 • 0.99 q- 0.01 • 0.99 a

The conditional probability of failure for M1 given that equation 13 is

satisfied can be computed from Bayes' rule (see equation 3):

p(I s Iml) •v(ml)
p(ml [13) = p(13) = 0.497

Similarly, the conditional probabilities of failure for the other compo-

nents, given that equation 13 is satisfied, are:

p(m2[ 13) = 0.010 p(m3 ] 13) -- 0.005

p(al l 13) = 0.497 p(a2 [ 13) -- 0.005

The above revised probabilities tell the operator to focus on components

M1 and A1 which are most likely to have failed.

Of course if more sensors are available, a better assessment of the prob-

abilities of component failure is obtained. Suppose there is an additional

sensor at X. Upon measuring X = 6, three additional assertions can be

made 6:

m, = T (14)

which says that M1 is not faulty,

m2-l-al -- T (15)

which says that A1 is faulty or M2 is faulty, and

m3q-al-ba2 -- T (16)

which says that A1 is faulty or A2 is faulty or M3 is faulty.

6See appendix A for how these assertions can be generated automatically.

9



The conjunction of the six assertions,(10) to (12) and (14) to (16), in

disjoint sum form, is

ml • m2 • a2 + _-T" _:_" ma • al •_-_

+ _--i" rg2" m3- al • a2 + _-T" m2 • m3 • _-_ = T (17)

The a priori probability that equation 17 is satisfied (see equation 7) is:

p(17) = 0.012. 0.99 + 0.01 • 0.994 +

0.013 • 0.992 + 0.012 • 0.992

As before, the conditional probabilities that equation 17 is satisfied

given the failure of each component can be computed by using equation

9. And the conditional probability of failure for each device, given that

equation 17 is satisfied, can be computed by using Bayes' rule (equation

3). The results are:

p(m1117) = 0
p(m 1I7) = 0.020 p(m31 I7) = 0.010

p(al[ 17) = 0.980 p(a2117) = 0.010

The above revised probabilities tell the operator to focus on component

A1 which is very likely to have failed. They also tell the operator not to

worry about component M1 which is known not to have failed.

If there is yet an additional sensor at Y indicating Y = 4, three addi-

tional assertions can be madeL

m2 = T (18)

which says that M2 is faulty,

i_ = T (19)

which says that A1 is not faulty, and

m3+as = T (20)

which says that M3 is faulty or A2 is faulty.

7See appendix A for how these assertions can be generated automatically.

10



The conjunction of the nine assertions, (10) to (12), (14) to (16), and
(18) to (20), in disjoint sum form, is

ml.m2.a---i-.a2+ml'm2-m3"al'a2 = T (21)

The a priori probability that equation 21 is satisfied (see equation 7) is:

p(2I) = 0.012 • 0.992 + 0.012. 0.993

As before, the conditional probabilities that equation 21 is satisfied

given the failure of each component can be computed using equation 9. And

the conditional probability of failure for each device, given that equation

21 is satisfied, can be computed by using Bayes' rule (equation 3). The

results are:

p(m, 121) = 0
p(m2121) = 1 p(m3121) = 0.503

p(al [21) = 0 p(a2121) = 0.503

The above revised probabilities tell the operator to focus on component

M2 which is known to have failed, and on components M3 and A2 which

are likely to have failed. They also tell the operator not to worry about

components M1 and A1 which are known not to have failed.

Of course if there is a sensor at Z, a complete diagnosis can be made.

This example shows the strengths and weaknesses of the proposed ap-

proach. The nine measurements indicate that M2 failed, and that M3 or

A2 (or both) failed. Furthermore the failure of M2 is compensated by the

failures of M3 or A2 (or both). This is a very unlikely situation. Assuming

that there are 16 possible outputs for each component and that all failing

modes are equally likely, the probability of this situation is

2 • 0.993 • 0.01. __0"01+ 0.992 .0"012 . __0"01 = 1.3 x 10 -5
15 15

which is three orders of magnitude smaller than the probability that only

component A1 has failed (0.994 • 0.01 = 0.96 × 10-2). With only seven

measurements, the approach would not help the operator in this unlikely

situation. In other words, the approach is good for the more likely failures.

The approach does not help when the very unlikely fault situations occur.

11



5 Discussion

Previous approaches used reason maintenance systems for diagnosis. The

approach presented in this publication divides the diagnosis task into two

subtasks: the generation of assertions and inference. Moreover, previous

approaches used probabilistic analysis to assess the likelihoods of each di-

agnosis (i.e., each solution to the system of Boolean equations K). In this

publication, the probabilistic analysis is used to assess the likelihoods of

failure for each component. This section addresses these issues.

5.1 Generation of assertions

For the first task, the generation of assertions, two kinds of tools can be

used: reason maintenance systems or domain-dependent analysis tools. The

latter generates the assertions directly while the former searches. For ex-

ample, for electric circuits, the direct methods include those based in nodal

analysis, loop analysis, etc. But the same assertions that are obtained

by using those methods can also be generated by writing Kirchoff's laws,

device laws, and a description of the circuit in PROLOG.

The choice of what tool is more effective depends on the specifics of the

applications. For systems such as electric circuits, that are well understood

and for which accurate models exist, domain-dependent methods seem to

be more efficient. Another advantage of domain-dependent methods is their

ability to make assertions not only when there is a difference between pre-

diction and observation, but also when there is an agreement. Furthermore,

typically more assertions can be made with domain-dependent methods

than with domain-independent methods. Equation 12 is an example of an

assertion that would not be made by domain-independent methods.

It should be noted that reason maintenance systems are not 100% do-

main independent. The module that predicts values (in order to compare

with measurements) is domain dependent. Furthermore, it seems that the

inference strategy of those systems can be extended to incorporate domain-

dependent rules such as if the measurement agrees with the prediction, there

can not be only one component failing for the adder/multiplier domain. But

12



writing such rules in a general-purposeformalism may be somewhatcom-
plex. The "consistent belief rule" and the "nogood inference rule" used
by Struss and Dressler [18] are examplesof additional rules that incorpo-
rate fault models, that is, that incorporate a description of the behavior
exhibited by the componentswhen they fail. The "circumscribed diagno-
sis engine" presentedby Raiman [16] is another exampleof an extension
to reasonmaintenancesystems;it enablesthe generationof assertionsnot
only from differencesbut also from agreements.

5.2 Inference

For the secondsubtask, the inferenceof component status given the as-
sertions, sentential logic is sufficient. Previous methods also used reason
maintenancesystemsfor the inference [8,16,18]. Sincefirst-order logic en-
compassessentential logic, those approachesworked. But the overhead
costsof using a more generaltool can be large.

There is a correspondencebetweenthe approachpresentedin this pub-
lication and previousapproaches.For example, the minimal diagnosiscon-
cept usedin previouswork [7] is related to the terms of the minimized form
of equation K.

Viewing diagnosis as solving a set of Boolean equations is simpler than

previous approaches. Many theorems used in those approaches have cor-

responding theorems in Boolean algebra. With the approach presented in

this publication, the well-developed machinery of Boolean algebra can be

directly used for diagnosis. Moreover, a simpler formulation also facilitates

focusing on the real computational issues.

Furthermore, the search can be avoided by manipulating the assertions

symbolically. An analogy can be made between numerical and symbolic

methods in algebra or calculus, and search and symbolic methods in logic.

Like numerical methods (e.g., for solving systems of nonlinear equations),

search methods are robust and quite general. But search methods also

have drawbacks that are analogous to the large amounts of computation

and convergence problems of numerical algorithms. Symbolic methods,

both in calculus and in logic, are not as general, but when they can be used

13



they are usually moreefficient. Appendix B comparessearchand symbolic
methods for problem solving.

5.3 Probabilistic analysis

Probabitistic analysis has also been used in previous research on automatic

diagnosis [1,3,8,15].

Some previous work focused on medical and similar kinds of diagnosis

where the physical system is not well understood [3,15]. In that work, the

assertions that can be made from the manifestations have a degree of un-

certainty. Work in this area aims at the generation of plausible hypothesis

taking into account the uncertainty of the assertions.

In other previous work [1,8] which, like this publication, focused on well-

understood physical systems, the goal has been to find a set of measure-

ments, as small as possible, yet sufficient to diagnose all faults. Entropy

measures were used to assess the amount of information each measure-

ment can provide. These measures in turn used probabilities of failures

for individual components. The prospective measurements were ranked in

decreasing order of the amount of information they can provide. Since

the actual amount of information provided by a measurement depends on

the outcome, measurements are actually ranked by the expected (in the

probabilistic sense) amount of information they will provide.

While in diagnosis the goal is to have a (as small as possible) set of

assertions such that the number of terms in equation K' is 1 (i.e., D = 0),

the goal in monitoring is to direct attention to the parts of the system

that seem to have problems. For monitoring, no choice of measurements

need to be made since the sensors are fixed when the system is built. The

probabilistic analysis in monitoring is not aimed at maximizing the amount

of information which is fixed. It is aimed at refining the probabilities of

failure of individual components.

14



6 Conclusion

Diagnostic reasoning can be decoupled into the generation of assertions

from the sensor readings and the system model, and the manipulation of

these assertions. The latter can be seen as solving a system of Boolean

equations. While previous approaches to automatic diagnosis used search,

the approach presented in this publication consists of solving the system of

equations symbolically.

Unlike diagnosis where one can make further measurements until a de-

cision is made, in selective monitoring the measurements are fixed. Using

a priori probabilities of component failure and Bayes' rule, revised proba-

bilities of failure can be computed. These will indicate what components

have failed or are the most likely to have failed. The method is robust

in the sense that even if a priori probabilities are not accurate, if there is

enough evidence showing that component c_ has failed, the value computed

for p(c_lK ) will be 1.

This approach is suitable for systems that are well understood and for

which the correctness of the assertions can be guaranteed. Also, the sys-

tem must be such that assertions can be made from instantaneous mea-

surements. Furthermore, the system must be such that changes are slow

enough to allow the computation.

A number of aspects must be considered in selective monitoring and

diagnostic reasoning is just one of them. Other aspects include, for exam-

ple, the ability to anticipate problems or failures and the ability to detect

abnormal conditions that are not caused by component failures. Future

work will explore the combination of the technique presented in this publi-

cation with those of previous work [10,11], and with other techniques such

as expert systems [14] and neural networks [9].
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Appendixes

A Digital circuit analysis

Assertions (10) to (12), (14) to (16), and (18) to (20) introduced in section

4 can be generated automatically as follows.

To each sensor node in the circuit, there corresponds an AND/OR graph

in which the OR nodes, which are circular, correspond to nodes in the cir-

cuit; and the AND nodes, which are rectangular, correspond to components.

Figures 3, 4, 5, and 6 show the AND/OR graphs for nodes F, G, X, and Y,

respectively.

For each solution tree of each AND/OR graph, the value of the root can

be computed from the value of the leaves. If the computed value does not

agree with the measurement, one can make the following assertion:

da+db+'"+dh = T

where da, db,.., dh are the logical variables that indicate the status of the

components corresponding to the AND nodes of the solution tree. This

assertion corresponds to the fact that at least one of the components cor-

responding to the AND nodes has failed. If the computed value agrees with

the measurements, one can make the following assertion:

d_.-d_b...dh+d_.db...d--h+...+d.'db'"dh = T

This assertion corresponds to the fact that there cannot be only one com-

ponent corresponding to the AND nodes failed.

17
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M1 A2

I _-- IX=A*C Z-G

Figure 3: AND/OR graph for node F of the circuit shown in figure 2
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M3

Z=C*E

M2 A1

Y=B*D Y=F-X

Figure 4: AND/OR graph for node G of the circuit shown in figure 2
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M1

X=A*C

M2

Figure 5: AND/OR graph for node X of the circuit shown in figure 2
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A2

I Y=G-Z

Figure 6: AND/OR graph for node Y of the circuit shown in figure 2
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Appendixes (continued)

B A comparison between search and

symbolic manipulation approaches

to problem solving

Consider the following problem, borrowed from [5]:

(1) x e {0,1}

(3) ye{0,1}

(5) z e (0, 1}

(7) aCb

(2) a ----el (x)

(4) b = el(y)

(6) c=e,(z)

(8) bee

where the function el is very expensive to compute.

The search approach to solve this problem is to enumerate all possibil-

ities and try each one until a solution is found. Although techniques such

as chronological backtracking can be used to improve the efficiency of this

search, this process will typically involve extensive computation.

The symbolic manipulation approach to solve this problem is to write

Boolean equations corresponding to conditions (7) and (8) above:

(-z + _) . (x -l- y) = W

(_+_).(yTz) ---- W

The conjunction of these equations is also true:

(3 + y). (x + y). (_ + _). (y + z) =
-Z.y.2+x._.z ----- T

Therefore, the problem has two solutions: {x = 0 y = 1 z = 0} and

{z=l y=0 z=l}.

f
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